Modern 2D anode materials for efficient energy storage systems

Artur P. Durajski, Grzegorz T. Kasprzak

Institute of Physics, Częstochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Częstochowa, Poland email: artur.durajski@pcz.pl

Czestochowa University of Technology

Advantages of low-dimensional batteries

Low-dimensional batteries, such as two-dimensional (2D) structures, offer several advantages over traditional three-dimensional (3D) battery architectures.

Methods

Particle Swarm Optimization

Project of ENVIRONMENTAL SIGNIFICANT

B_3C_5 and N_3C_5 systems: candidates for anode materials for lithium-ion batteries

Atomic structure (top and side views) of pristine B_3C_5 (N_3C_5) bilayer and Li-intercalated B_3C_5 (N_3C_5) bilayer.

The most important results

The maximum theoretical specific capacity (C) was computed via the following equation:

where n is the number of intercalated Li atoms, z is the valence number, F is the Faraday constant, and $M_{X_3C_5}$ is the molar mass of B_3C_5 or N_3C_5 bilayer. We achieved a high theoretical capacity of **580 mAh/g** and **525 mAh/g** for B_3C_5 and N_3C_5 , anodes. The obtained results are much larger compared to these of commercially used graphite (372 mAh/g) or TiO₂ (335 mAh/g).

International Exhibition of Innovation – IEI 2023