

Development of high performance CO₂ adsorbent using response surface methodology

Abstract

The response surface method (RSM) was used to optimize the conditions for the impregnation of blended amines into mesostructured cellular silica foam (MSU-F) to prepare effective solid sorbents for CO₂ capture. The effects of the amounts of tetraethylenepentamine (TEPA), diethanolamine (DEA), and MeOH in the wet impregnation mixture on the amounts of CO₂ adsorbed were investigated. The optimum sorbent was characterized by N₂ adsorption-desorption, FT-IR spectra, and CO₂ adsorption. Under the adsorption conditions 40 °C and 100 kPa CO₂, the optimum sorbent showed fast kinetics and an excellent CO₂ adsorption of 5.64 mmol/g. We also found that the amounts of CO_2 adsorbed by the optimum sorbent depended substantially on the adsorption temperature. The highest CO_2 adsorption, 6.86 mmol/g, was obtained at 50 °C and 100 kPa. The FT-IR spectrum indicated that CO_2 was adsorbed into the adsorbents through the formation of carbamate species.

Introduction

*CO*₂*emissions* & *global warming*

Effects of supports

@ 40 °C, 100 kPa

Support	MCM-41	MSU-H	Al-MSU-F	MSU-F
Pore size (nm)	2.1	8.0	20.2	28
CO ₂	3.42	5.42	5.50	5.64

Amine scrubbing solution (Absorption)

High CO₂

adsorption

capacity

Amine solid sorbents

Experimental Section

uptake (mmol/g)

- Strong effects of pore sizes on the CO₂ uptake;
- With largest pore, MSU-F is the best support.

TEPA44-DEA28/MSU-F

 $\Box CO_2$ uptake: 6.00 mmol/g

 $\square N_2$ uptake: 0.05 mmol/g

Excellent selectivity of > 100 for CO_2/N_2

Absolute pressure (kPa)

High working capacity.

Materials	Surface area (m²/g)	Pore size (nm)
MSU-F	275	28
TEPA44- DEA28/MSU-F (optimum sorbent)	2.43	5.91

Amines were loaded into the support.

MSU-F

500

Number of cycles

CO₂ adsorption performance of optimum sorbent

Carbamate formation

High CO₂ adsorption performance (~ 7 mmol/g at 100 kPa, 50 °C)

Optimum sorbent: TEPA44-DEA28/MSU-F-58.2

> **CO**₂ was adsorbed onto the sorbent through the formation of ammonium Carbamate.

2500 1500 1000 3500 3000 2000 Wavenumber (cm⁻¹)

Conclusions

- TEPA44-DEA28/MSU-F is the optimum sorbent was developed based on
 - the surface optimization methodology;
- Optimum temperature: 50 °C (6.86 mmol/g);
- TEPA44-DEA28/MSU-F showed a good cyclic stability;
- Excellent selectivity for CO_2/N_2
- CO₂ was adsorbed on to the sorbents through the formation of carbamate species.

References

• Ge, K.; Yu, Q.; Chen, S.; Shi, X.; Wang, J. Chem. Eng. J. 2019, 364, 328. • Mohammad, N.K.; Ghaemi, A.; Tahvildari, K. Int. J. Greenh. Gas. Con. 2019, 88, 24. • Rochelle, G. T. Science 2009, 325, 1652. • Sabouni, R.; Kazemian, H.; Rohani, S. Environ. Sci. Pollut. Res. 2014, 21, 5427. • Sumida, k.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T-H.; Long, J.R. Chem. Rev. 2012, 112, 724.