International Exhibition of Innovation – IEI 2023

Transparent dye-sensitized solar cells with carbon fibers as efficient photoanode material

Aleksandra Drygała, Sabina Lesz, Adam Zarychta, Wojciech Pakieła

EHT = 3.00 kV

Mag = 1.00 K X

Morphology of carbon fibers applied in DSSC photoanode

Mag = 15.00 K X

Signal A = InLen

EHT = 3.00 k

In this invention TiO_2 /carbon fibers mesoporous layer can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSC). This kind of photovoltaic device consists of photoanode, redox electrolyte, and counter electrode. TiO₂/carbon fibers layer acts as a scaffold to adsorbed dye molecules and transports the electron - photogenerated by light absorption. The morphology, particle/wire and pore size of photoanode componens play critical roles in photoelectron diffusion and conversion efficiency of DSSC.

Transparent photoanode of DSSCs with carbon fibers

Comparison of electrical properties of dye-sensitized solar cells with TiO_2 and TiO_2 /carbon fibers photoanodes

Type of DSSCs photoanode	l _{sc} [mA]	V _{oc} [mV]	FF	<i>E_{ff}</i> [%]
TiO ₂	4.83	668	0.58	4.36
$TiO_{3}/carbon fibers$	5.32	685	0.61	5.28

Dye-sensitized solar cells (DSSCs) provide a promising alternative to conventional p-n junction photovoltaic devices due to their simple manufacturing process, low cost of materials, light weight, good photovoltaic specifically under properties, low-light conditions, short energy payback time, and low environmental impact.

Department of Engineering Materials and Biomaterials

< 1